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Creep in Polycrystalline Aggregates by Matter Transport 
Through a Liquid Phase 

RISHI RAJ 

Department of Materials Sciences and Engineering, Cornell University, Ithaca, New York 14853 

Polycrystalline aggregates which contain some liquid in grain interfaces can deform by matter transport, 
through the liquid phase. If the applied stress is multiaxial, then the deviatoric component of the stress will 
produce creep, that is, a change in shape of the aggregate without any change in volume, while the mean 
stress will cause the aggregate to densify. Constitutive equations for creep rate and densification rate are 
derived. It is shown that the rate may be controlled either by the interface kinetics of dissolution/precipita- 
tion of the crystal from the liquid or by the diffusion rate of matter through the liquid. The first process can 
be related to the kinetics of crystal growth from solution, and the second, to the viscosity of the liquid. The 
results of the analysis are used to interpret experiments on densification rate of a rock salt polycrystalline 
aggregate immersed in saturated brine. 

INTRODUCTION 

The idea of pressure solution originally proposed by Sarby 
[1863] to explain metamorphic segregation in rocks has recent- 
ly been extended to explain time dependent deformation in 
geological systems [Durney, 1972; Elliot, 1973; Rutter, 1976; 
Stacker and Ashby, 1973]. The concept is analogous to the 
classical mechanism of diffusional creep [Cable, 1964] which 
occurs in polycrystals at elevated temperatures. In diffusional 
creep, matter is transported across distances which are of the 
order of the grain diameter; this produces a change in grain 
shape which manifests itself as strain that can be measured. The 
kinetics of diffusional creep is generally controlled by diffusion 
of matter, atom by atom, through the grain interfaces [Cable, 
1964] and through the crystal lattice itself [Herring, 1950]. 
Such creep is produced only if the applied state of stress has a 
nonzero deviatoric component and occurs at high temperatures 
where solid state diffusion occurs at an appreciable rate. 

In solution-precipitation creep, matter is believed to be 
transported by diffusion through the thin liquid film at grain 
interfaces. (The expression 'solution-precipitation' creep rather 
than 'pressure solution' is used to identify creep in the partially 
liquid systems because, in the steady state, when the crystals 
change their shape, they must dissolve and then precipitate out 
of the fluid at the same rate.) As such it is similar to the case of 
boundary diffusion controlled diffusional creep [Elliot, 1973]. 
The significant point is that solution-precipitation creep is pos- 
sible at relatively much lower temperatures than diffusional 
creep. For example, in aggregates of rock salt immersed in 
brine, creep is possible even at room temperature [Thompson, 
1862], whereas pure rock salt aggregates would show signifi- 
cant diffusional creep only at temperatures above 800 K 
[Heard, 1972]. Other examples are found in ceramic-liquid 
systems which contain a eutectic liquid phase in grain bound- 
aries [Clarke, 1979] such as those found in the upper mantle of 
the earth [Yoder, 1976]; here the creep rate scales with the 
homologous temperature with respect to the eutectic temper- 
ature, rather than the melt temperature of the ceramic phase 
which can be relatively much higher [Lange et al., 1980]. 

In some respects, however, diffusional creep and solution- 
precipitation creep are different. The purpose of this paper is to 
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emphasize these differences and to develop constitutive equa- 
tions which are particularly adapted for flow in partially fluid 
agg• egates. In particular, three specific problems are posed and 
possible solutions to them are presented: 

1. In diffusional creep it is necessary to sustain a gradient in 
the normal traction (or pressure) along the interfaces, in that 
this provides the fundamental driving force for net flux of 
molecules. In partially fluid systems, in steady state defor- 
mation, one cannot reconcile the existence of a pressure gradi- 
ent with the existence of a continuous film of liquid along the 
grain interfaces. (In the case of a solid surface in contact with a 
fluid the normal traction on the surface will be equal to the fluid 
pressure.) If a pressure gradient exists, then the fluid will flow 
and redistribute itself in a manner such that the pressure in all 
regions becomes equal. 

2. In addition to considering diffusion of molecules through 
the liquid, one must also consider the mechanism by which the 
crystal dissolves and grows from the liquid solution. This pro- 
cess is related to the kinetics of crystal growth from a liquid 
phase, a situation which is peculiar to creep in the partially 
liquid systems. 

3. Whereas diffusional creep is possible only if the devia- 
toric component of the stress state is nonzero, solution- 
precipitation is possible under hydrostatic state of stress as well. 
Under hydrostatic pressure the fluid can be squeezed out, pro- 
ducing a volumetric contraction in the aggregate. The paths for 
matter transport for creep and densification are shown by the 
schematic in Figure 1. In creep the grain changes shape, while 
in densification the grains pack closer together as matter is 
removed from grain interfaces and deposited in the interstitial 
space. In geologic materials the term filter pressing is used to 
describe the process of squeezing the melt out of a partially 
molten rock. If the partial melt contains so much fluid that the 
grains are floating and not in contact, then the melt can be 
removed simply by a filtering process which separates the liquid 
component from the solid component. If, on the other hand, the 
liquid volume fraction is so small that the solid particles are in 
contact, then further removal of liquid must be accommodated 
by change in shape of the grains, by a mechanism of the type 
shown in Figure lb. This latter process is being called densifica- 
tion. 

A possible solution to the first problem is presented by 
postulating an atomic structure for the interfaces which contain 
a fluid phase. For the second problem, rate equations for creep 
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Fig. 1. (a) A deviatoric applied stress can lead to mass transport 
which produces change in shape without a change in volume. (b) A 
mean applied stress produces densification by mass transport. As the 
liquid pocket is filled by the crystal, the liquid is squeezed out through 
interconnected channels. 

are related to the kinetics of crystal growth and dissolution. 
Finally, constitutive equations for creep and densification are 
obtained. 

Some of the work presented here derives from two recent 
papers; those results are presented without detailed derivation 
with reference to these publications [Raj and Chyung, 1981; 
Raj, 1981]. The first reference is particularly relevant. Finally, 
the results of creep experiments on a rock salt aggregate im- 
mersed in a saturated solution of brine are described. 

MICROSTRUCTURE 

Three Grain Junctions 

In a polycrystalline aggregate which contains a small amount 
of a liquid phase in the interfacial regions, the fluid will form an 
interconnected network if the dihedral angle (or the wetting 
angle) formed by the liquid with crystalline grain boundary is 
less than 7[/3 [Raj, 1981]. The network will consist of pipes 
along the three grain junctions which will be connected to each 
other at the four grain junctions. The cross section of these 
pipes, in an ideal situation in which the interface energies are 
isotropic and the liquid is uniformly distributed, is shown in 
Figure 2a. The half dihedral angle 0 is defined by the equation 

cos 0 = y--• (1) 
27 

where 7b is the energy of the crystal-crystal interface and 7 is the 
energy of the crystal-fluid interface; R, the radius of curvature 
of the interfaces, can be related to %, the volume fraction of the 

liquid phase in the aggregate, through the following equation 
[Raj, 1981]: 

8{ 7[7[ }r 2 %=- 2cos 20sin - +3(0-«sin20 (2) 
where d is the 'equiaxed' grain size as shown in Figure 2b. This 
result is based on the assumption that the fluid which segre- 
gates at triple junction is of much greater volume than the fluid 
which is segregated at the two grain junctions; this appears to 
be borne out by transmission electron microscopy of poly- 
crystals which contain a small amount of a fluid phase [Clarke, 
1979]. 

The point about interconnectivity of the fluid in the aggre- 
gate is important when considering densification. As can be 
seen in Figure lb, densification is possible only if the fluid can 
flow out of the three grain junctions. Thus densification is 
possible only if the dihedral angle is < 7[/3. Indeed, the liquid 
has a characteristic pore pressure only when it is interconnected 
within the aggregate. 

Two Grain Junctions 

In order to explain solution-precipitation creep, as en- 
visioned by the present mechanism, it is essential that it should 
be possible to sustain a gradient in the normal traction at two 
grain junctions and yet provide access for the fluid phase. The 
access of the fluid is necessary in order to provide paths for 
rapid transport of matter. A plausible structure of two grain 
junctions which admits both of these features is explained in the 
work of Raj and Chyung [1981]. The model consists of an 
island structure where regions of good fit (where regions from 
adjacent crystals meet rigidly with each other) are separated by 
regions that contain the fluid. All normal stress is supported at 
the islands, while the interpenetrating fluid regions provide a 
path for rapid diffusion. (Detailed experimental studies of the 
atomic structure of two grain junctions containing a liquid are 
not available, although several observations of glass in two and 
three grain junctions have been reported in the literature 
[Clarke, 1979].) We assume that the islands occupy an area 
fraction x and that the height of the ledges is h. If b is the lattice 
spacing, then the important structure parameter relevant to the 
flow equations is • = xh/b, which as a first approximation 
should be of order unity. 

Another consequence of the island structure is that the devia- 
toric stress, which drives the creep process, will be greater than 
the applied stress by a factor 1/(1 - x) because the applied load 
is supported only at the islands. This stress enhancement factor 
is included in the creep equations presented later. 

CONSTITUTIVE EQUATIONS FOR FLOW UNDER 
MULTIAXIAL STRESS STATES 

Stress Components and Pore Pressure 

The stress state of the aggregate can be defined in terms of 
the principal stresses, a•, a 2, and a3, applied to the solid and by 
the pore pressure of the interpenetrating liquid phase, Po. The 
principal stresses lead to a definition of the von Mises devia- 
toric stress ae, such that 

{«[(0.1 -- 0'2) 2 'Jr- (0'2 -- 0'3) 2 'Jr- (0'3 -- 0'1)2]} 1/2 
0'e-- (1 - x) (3) 

and an effective pressure Pe, such that 

t0'1 -lt- 0.2 -lt- 0.3• Pe:-- 3(1 - x) j-Po (4) 
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Fig. 2. (a, b) A cross section of the three grain junctions. The geometry of the glass pocket is completely defined by r, the 
radius of curvature, and 0, the dihedral angle. The total volume fraction of the fluid phase can be derived in terms of r and 0 
as was done in (2). (c) Atomic process by which matter is transported from one interface to another. Three steps are involved 
in the transport cycle. Atoms must be detached from the crystal (interface reaction), be transported by diffusion through the 
fluid phase, and then be reattached to the crystal at a different interface. 

Now o' e will give rise to deviatoric strain rate de, while Pe will 
cause a rate of change in the volume of the aggregate, which we 
call the densification rate/9. The sign of/9 is defined such that it 
is positive when the Pe is positive, i.e., when the volume of the 
aggregate shrinks. The factor (1 - x) arises from the proposed 
island structure of the two grain junctions, as described above. 

Thermodynamics 

In order to obtain deformation by mass transport, it is 
necessary to have a driving force which provides the basic 
thermodynamic condition for the molecules to move in a net 
direction. Of course, this alone does not suffice; the kinetics of 
transport must also be rapid enough to provide physically 
meaningful rates of deformation. 

It is sometimes said that the driving force for solution- 
orecipitation creep arises from the pressure dependence of the 
solubility of the crystal in the liquid phase. This is not correct. 
We believe that the correct thermodynamic analysis has been 
provided by Robin [1978], who has explained that the driving 

force for diffusional transport comes from the gradient in the 
normal tractions along an interface. The solubility of the crystal 
is undoubtedly important from a kinetic standpoint, but as 
regards the thermodynamic driving force, it is irrelevant. 

The driving force for deviatoric creep (de) and densification 
(/•) are denoted as •/e and g•,. Their units would be J m-• per 
atom. Appendix A shows how they can be derived from the first 
law of thermodynamics. As a result, the following expressions 
are obtained for both: 

2•7ef• 
ge-- d (5) 

and 

2[p e -- 
gP = d (6) 

where d is the grain size. We have assumed here that the 
diffusion distances are of the order of one half of the grain size. 
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This should be true if the polycrystal contains equiaxed grains. 
However, there may be situations where the grain shape is 
nonisotropic or the diffusion distances relate to some other 
microstructural parameter; in these instances, d/2 should be 
replaced by the physically correct diffusion distance. Note that 
whereas ge does not change much as creep progresses (other 
than a small change in d due to grain elongation), g•, decreases 
with increasing density. The reason is that g•, depends on r (see 
Figure 2), which is related to the volume fraction of the liquid 
phase %, given by (2). As the material densities, r gets smaller 
and so does g•,. Eventually g•, will become zero, with a finite 
amount of liquid still remaining in the aggregate. The impli- 
cation is that fluid cannot be completely removed from the 
polycrystal by applying effective pressure. For a given effective 
pressure, equilibrium will be reached when 

r0 = -- (7) 
Pe 

Note that r0 also defines the equilibrium volume fraction of 
retained fluid, through use of (2). 

The assumption, implicit in (1) and (7), that the energy of the 
crystal-liquid interface ? is isotropic and that it does not change 
with the size of the liquid pocket at three grain junctions is 
significant. The question of the molecular structure of the tran- 
sition layer from the crystal to the liquid has not yet been 
satisfactorily resolved. If the interface is diffuse [Frank, 1952; 
Tiller, 1969; Hilliard and Cahn, 1958-1, then ? will not vary 
much with orientation, although it will begin to change with 
the size of the pocket r (in Figure 2a) when r becomes about 
equal to the width of the transition layer. On the other hand, 
solid-solid and solid-vapor interfaces of crystals are known to 
be sharp and hence energetically quite anisotropic [Herring, 
1951]; in this case the free energy and shape of the interface is 
likely to be temperature dependent because of the importance 
of the entropy arising from steps or roughness of the interface 
[Spaepen, 1980]. How do these considerations influence the 
result in (7)? This is a difficult question to answer at the present 
time. A similar issue arises in the theory of nucleation of micro- 
crystals from a supersaturated solution where the critical nu- 
cleus size may be only a few tens of atmoic diameters and where 
the size of the critical nucleus depends on •. A discussion of the 
problem is given in the work of Christian [1965]. The first- 
order assumption that • does not change with nucleus size 
appears to provide a reasonable qualitative explanation of 
experimental results. Undoubtedly the assumption is quite ap- 
proximate, but the next level of sophistication may require 
other assumptions regarding atomic structure which can be 
resolved only by high-resolution experimental studies of inter- 
faces. This is an area of considerable current interest (for exam- 
ple, see American Society for Metals I- 1979]). 

Kinetics 

The kinetics of the creep process will depend on the mecha- 
nism by which the molecules are detached from the crystal at a 
'source' site, are transported through the fluid, and are re- 
attached to the crystal at a 'sink' site. This is shown sche- 
matically in Figure 2c. In general, two kinetic processes are 
involved' the interface reaction by which an atom is attached 
to, or detached from, the crystal and the rate of transport 
through the fluid. These processes must occur in series for the 
ransport cycle to be complete' therefore the slower one of them 
will be rate controlling. 

As a first approximation, the dissolution of a crystal in an 

undersaturated solution and growth from a supersaturated 
solution may be assumed to be analogous to the situation in 
Figure 2c. The advantage of this assumption is that data from 
independent experiments on crystal growth from solution can 
be applied to interpret data on creep and densification. The 
disadvantage is that rather severe assumptions must be made 
about the structure of the interface, e.g., the island structure. A 
short discussion of these points is given here. 

A macroscopic theory for the dissolution (or growth) of a 
crystal into a solution can be found in early literature. For 
example, Moelwyn-Hughes [1947] derives an expression show- 
ing that the interface velocity, which is proportional to the 
dissolution rate of a flat interface, depends on the interface 
reaction and on the diffusion of solute in the solution. Two 

limiting cases can be considered. In the diffusion limited case 
[Readey and Cooper, 1966] the dissolution rate, defined as the 
interface velocity, changes with time, approximately as t- x/2. In 
the interface limited case the dissolution rate remains constant 

with time and is linearly proportional to the degree of undersa- 
turation. In those instances where the liquid is quite fluid and 
where the crystal has some solubility in the liquid, the interface 
reaction is usually found to be rate limiting. For the interface 
limited case, one must also consider the atomic mechanisms by 
which solute atoms transfer from the crystal, which is highly 
ordered, to the liquid in which the solute is randomly distrib- 
uted. It is now agreed upon that atoms attach to steps in the 
crystal surface [Christian, 1965]. If the surface is atomically flat, 
then steps must be nucleated before a crystal can grow. The 
steps can be present as a result of screw dislocations in crystal, 
whose axis is aligned normal to the interface, or they may be 
nucleated under the influence of the driving force. As the driv- 
ing force for dissolution or growth is increased, an atomically 
flat interface undergoes a roughening transition. Below this 
transition the interface velocity is limited by the nucleation rate 
of the steps, and above it the steps nucleate easily and the 
velocity becomes dependent on the rate at which atoms can 
attach to the ledge sites created by the steps. Above the transi- 
tion the interface velocity is linearly proportional to the driving 
force. By applying the results of such analyses [Weeks and 
Gilmer, 1979; Uhlmann, 1972] to experiments, one can usually 
determine which of the atomic mechanisms are admissible 

under the experimental conditions. 
The island structure of the interface, postulated for the pro- 

blem at hand, is similar to the structure of the interface which is 
assumed to exist above the roughening transition when a cry- 
stal grows from solution. The question is whether conditions 
which may prevail on the surface of a crystal immersed in an 
infinite solution can be applied to the junction of two misorien- 
ted crystals which have a thin liquid film between them. One 
can also ask whether the islands are formed under the influence 

of applied stress, or whether they are present intrinsically. For 
our creep mechanism to operate it is necessary that the islands 
should be thermodynamically stable; otherwise they would 
grow and disappear, and slowly the aggregate woulds stop 
creeping. In the author's view the islands are stabilized from 
entropy considerations. In those instances where the dihedral 
angle 0 is small, the cost in enthalpy of including crystal-liquid- 
crystal instead of a crystal-crystal interface is likely to be small 
and may well be offset by the configurational entropy due to 
the islands. A rigorous analysis of the problem is beyond the 
scope of this paper. Suffice it to say here that the creep model 
developed with the concept of the island structure, which allows 
us to apply crystal growth and dissolution data to estimate 
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TABLE 1. A Summary of the Creep Equations for Multiaxial Loading 

Interface Controlled Creep Diffusion Controlled Creep Net Creep Equation 

deviatoric (A)' kT d (B)' 2.3 • tSa creep rate 

ae• ki'•/kT 
(C)' a (k•'&la2/2.3kT&z) + 1 

-Y (Pc- -'Yr) f• 3(pc-•)fl k•'e/kT densification (D): 3(pe-r f•)k•'e (E)' 6.9 ea (F): 
creep rate kT d rid 3 d (k•'&lde/2.3kT&z) + 1 

e is the solubility of the crystal in the fluid. It will be pressure and temperature dependent according to (8). a, to a first approximation, may be 
assumed to be unity. % and Pe are defined by (2) and (3). 

creep rate in partially fluid aggregates of polycrystals, appears 
to give good comparison between theory and experiment. As 
we apply the model to different systems [Raj and Chyung, 1981; 
Tsai and Raj, 1982a, b], with reasonable success, our confidence 
is increased that we are on the right course. 

Given the assumption of an island structure and in view of 
the preceding discussion, we can proceed with the theory that 
the interface velocity would be linearly proportional to the 
driving force, when the process is interface reaction controlled. 
The diffusion controlled case, which is analogous to Coble 
creep [Coble, 1964], is also linear in stress; therefore the solu- 
tion to the coupled problem can be obtained by simple super- 
imposition. A mechanical analog is a convenient way to rep- 
resent the coupled problem. It would consist of two dashpots 
mounted in series so that each one adds to the resistance to 

flow. The total resistance, then, is the series sum of the contri- 
bution from each dashpot. 

The analysis for the creep rates when interface reaction is 
rate controlling and when diffusion is rate controlling is given 
in Appendix B. The results are presented in Table 1. The 
equations in the last column in the table are derived by using 
the dashpot analog [Raj and Chyung, 1981]. They reduce easily 
to the interface controlled case if k•'d >> 1/rid 2 and to the diffus- 
ion controlled case if ka'e << 1/rid 2. Here d is the grain size, and 
the parameters r/and ka'• are described below. 

The equations in Table 1 contain three new parameters, r/, 
ka', and & r/is simply the viscosity of the fluid phase. ka'e is the 
lineal growth velocity of the crystal interface (m s-•) under a 
driving force of 1 kT per molecule; it may be measured inde- 
pendently through crystal growth type of experiments. The 
normalized growth velocity of the interface is written as ka'• to 
emphasize that the creep rate will be proportional to the solu- 
bility of the crystal in the liquid in both interface and diffusion 
limited cases. In fact, k•' and d are inseparable quantities, since 
only the product can be measured experimentally. More exact- 
ly, ka' represents the jump frequency of the solute atoms from 
the crystal into the liquid, across the interface. Thus the inter- 
face velocity is determined by the jump frequency of atoms 
multiplied by the number of atoms involved in the jump which 
is proportional to the concentration of solute atoms in the 
solution. Since we are concerned here with molecular rather 

than elemental crystals, the slower among the molecular species 
will control the rate of mass transport. 

The parameter • represents the solubility of the crystal mol- 
ecules in the fluid phase. It is likely to be pressure and temper- 
ature dependent as follows: 

e = 6o exp [--(poAV + AH)/kT] (8) 

where P0 is the pore pressure in the fluid, AH is the heat of 
solution (its sign is positive if the reaction is endothermic) and 

A V is the difference in the partial molar volume of the solute in 
the fluid and in the crystal phase. (The average solubility of the 
crystal phase in the fluid will depend on the strain energy in the 
crystalline grains as well. However, that effect is likely to be 
small in comparison to the influence of the fluid pressure Po on 
the solubility. If the crystal surface can equilibrate easily with 
the fluid it contacis, the chemical potential of the molecules 
near the surface in the crystal and the fluid must be equal. The 
chemical potential of the molecules will be influenced by the 
normal traction on the surface from the fluid, Po, and by the 
strain energy in the crystal. If the stress in the crystal is of order 
a, then the strain energy will be of the order of a2/E, where E is 
the elastic modulus. Thus if Po and a are about the same order 
of magnitude, the strain energy therm will be smaller than the 
pressure term by a factor of the order of alE. Since, in solution- 
precipitation creep, we are concerned with stresses which are 
much smaller than the elastic modulus, the influence of strain 
energy is likely to be small.) 6o is a normalizing value for the 
solubility. Note that 6 depends on the pore pressure, not the 
effective pressure. Also A V may be positive or negative, de- 
pending on an increase or a decrease in volume when the 
crystal dissolves in the fluid. 

IMPERMEABLE 
RUBBER SEAL 

STAINLESS 
STEEL 
ANNULUI 

LVDT 

WATER '-'•'[ 
Fig. 3. A schematic of setup which was used to measure densifica- 

tion creep in aggregates of rock salt crystals immersed in saturated 
brine. 
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Discussion of the Flow Equations 

The equations for flow are given in the right-hand column in 
Table 1. They call for a creep rate which is slower than either 
the interface controlled or the diffusion controlled creep rate. In 

practice, though, the difference between the two may be so large 
that only one of them, the slower one, need be considered. 

The constitutive equations contain terms which include the 
loading parameters (a e, Pe, /90, and T), terms which depend on 
the thermodynamic and kinetic properties of the system (AH, 
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Fig. 5. Stress dependence of the densification creep rate. 
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Fig. 6. Grain size dependence of the densification creep rate. 

A I/, k x', and r/), and terms which represent the microstructure 
(•, x, and d). Although it may be possible to do controlled 
experiments in simple model systems, it is unlikely that all these 
parameters would be known in complex multicomponent sys- 
tems found in the earth. As such, a simple way of distinguishing 
between interface reaction and diffusion would be to measure 

the grain size dependence of the creep rate, which is d-3 for 
diffusion control and d- x for interface control. The solubility of 
the crystal in the fluid phase is important in solution- 
precipitation creep and is included in the equations through the 
parameter e. 

The applied pressure and the pore pressure both influence 
creep flow. The difference between them defines the effective 
pressure (equation (4)) which leads to densification. On the 
other hand, the pore pressure, by itself, can influence solubility 
(equation (8)) and therefore the deviatoric creep rates. 

As was discussed earlier the densification creep rate will be 
nonlinear in time unless Pe >> y/r, for the simple reason that r 
will decrease with densification. As a result,/• will decrease with 
time. In fact, when r becomes so small that (7) is satisfied, then 
densification would stop. 

EXPERIMENTS 

The data on the effect of grain size on creep in partially liquid 
aggregates is meager. Our group has reported measurements of 
creep in a /• spodumene lithia-alumino-silicate glass ceramic 
system [Raj and Chyung, 1981]. The comparison with theory 
was quite good. The stress dependence of the creep rate was 
linear, and grain size dependence was d-x, which suggested 
interface control. Further, the kinetic data for kx'e were ob- 
tained independently. They were used in conjunction with 
equation (A) in Table 1 to compare the magnitudes of the 
experimental and theoretical creep rates. Good agreement was 
obtained. 

Here another set of data are reported which also support the 
interface controlled model. Experiments for densification creep 

were carried out on aggregates of rock salt crystals immersed in 
a solution of saturated brine (made with distilled water). High- 
purity salt crystals were obtained from the Harshaw Chemical 
Company and were cleaved into small crystals in order to 
prepare aggregates with a varying gain size. The crystallites 
were packed into a stainless steel chamber shown in Figure 3, 
and the densification creep was measured by means of an 
LVDT. The temperature was kept constant to within +0.1 K 
with the use of a water bath. The presence of excess saturated 
water assured that the pore pressure remained constant at 1 
atm. The chamber was kept sealed by means of a flexible 
impermeable rubber. The size of the deformation chamber was 
7.6-mm diameter in cross section, while the height varied from 6 
mm to 20 mm. 

The results from the creep measurements are included in 
Figures 4 through 6. Typical creep curves are shown in Figure 
4. the stress dependence of the creep rate in Figure 5, and the 
grain size dependence of the creep rate in Figure 6. There is 
considerable scatter in the data. A possible explanation is that 
the packing of the crystals was different from test to test which 
would have resulted in some variability in r and, therefore, in 
the driving force. At the time that the experiments were done, 
we had not realized the importance of the initial packing desity. 
If we were to repeat the experiments, we would first make cold 
compacts from the crystallites before subjecting them to creep. 
Nevertheless, the suggestion from the present results is that the 
densification creep rate,/•, is about linearly proportional to Pe•, 
and inversely proportional to d. In accordance with equation 
(D) in Table 1, the implication then is that the creep rate in our 
experiments was being controlled by interface reaction. 

SUMMARY 

1. In deformation induced by diffusional transport, mol- 
ecules must be removed from one two grain junction and 
deposited at the neighboring two grain junction. For rapid 
diffusion through the two grain junction, it is necessary that the 
fluid have access to all parts of the interface and also support a 
gradient in normal traction along the interface. This requires a 
study of the atomic structure of the two grain junctions that 
contain a liquid. There are no such studies yet available. A 
possible structure which would reconcile both of these require- 
ments is an island structure in which the stresses are supported 
at regions of good fit while the interpenetrating fluid provides a 
path for rapid mass transport. 

2. The kinetics of solution-precipitation creep may depend 
not only on the rate of diffusion through the liquid phase, but 
also on the interface reaction by which the molecules are at- 
tached or removed from the crystal interfaces. The latter pro- 
cess resembles crystal growth (or dissolution) from a liquid 
solution. In those instances where creep is interface reaction 
controlled, the kinetics of creep will be related to the kinetics of 
crystal growth. 

3. Expressions for deviatoric creep rate and densification 
rate have been derived and are summarized in Table 1. Note 

that the grain size dependence is d-3 for diffusion control and 
d- x for interface control. 

4. When an effective pressure (equal to mean stress minus 
the pore pressure) is applied, the aggregate will densify and 
liquid will be squeezed out. However, all liquid cannot be 
squeezed out by this process. The amount of liquid remaining 
at equilibrium is given by (7). 

5. The experimental evidence, which so far is rather limited, 
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suggests that the interface control may be the more important 
mechanism in solution precipitation creep. 

APPENDIX A 

Derivation for ge 

We derive here an approximate form for the average value of 
//e' For simplicity we consider the grains to be in the shape of 
cubes with the faces aligned in the direction of the principal 
stresses. If we assume, as is the common assumption in theory 
of plastic flow [Hill, 1950], that the direction of the principal 
strain rates coincides with the direction of the principal stresses, 
that the constant volume condition is maintained (i.e., the 
Poisson's ratio equals 1/2), and that the equivalent strain rate is 
defined by the following equation: 

de --- '•- [(dl -- •2) 2 -[- (/•2 -- •3) 2 -[- (/•3 -- dl)2] 1/2 (A1) 
then the rate of doing work in the solid will be O'e• e. When the 
grains elongate as a result of creep, a small part of this work is 
converted into internal energy in the form of increased grain 
boundary area. The remainder is spent in the dissipative pro- 
cesses of transporting atoms by diffusion. From the first law of 
thermodynamics, 

• = B;'- 0 (A2) 

where B;' is the rate of doing work on the system, 0 is the rate 
of increase in the internal energy of the system, and • is the 
heat flow rate out of the system. For our problem it easily can 
be demonstrated that 0 << B;', so we shall seek an expression 
for ge by equating B;' '-, •. By the arguments given above, 

•/' •--- O'er e (A3) 

per unit volume. The dissipated work will be equal to (the 
driving force per atom =//e) X (number of atoms transported 
to achieve the strain rate = d, x d3/•) x (average distance 
travelled by the atom = d/2)+ (volume of the grain = d3). 
Hence 

ß 

t•ed (A4) 

where fl is the molecular volume and d is the grain size. 
Equations (A2) and (A3) lead to the result quoted in (5) in the 
text. 

Derivation for !tp 
Again we use the first law of thermodynamics (equation 

(A2)), except this time 0 is substantial and we include it in the 
analysis. We consider the densification creep of a saturated 
aggregate under the influence of an applied pressure p, while 
the pore pressure of the fluid is P0. The effective pressure then is 

Pe = P- Po (A5) 

If V is the total volume and V• is the fluid volume then we 
have that 

12= I?o (A6) 
since the crystalline volume remains constant. I4;' is then given 
by 

[•g' = p e IY (A7) 

and the dissipative work by 

d lYa (AS) 

where g•, is the average driving force per atom, and d/2 is 
average distance of travel (d being the grain size). 

When the volume decreases, liquid is squeezed out of the 
pores at the triple junctions. There is a change in the surface 
energy configuration of the triple junction since more of the 
crystal-liquid interface is replaced by the crystal-crystal inter- 
face. For the geometry shown in Figure 2, the changes in the 
surface area are related uniquely to the amount of liquid 
squeezed out of the triple junction, and it can be shown with the 
use of the geometrical relations given in the work of Raj [ 1981] 
that 

0 = 7__ l?a (A9) 
r 

when 0 </r/6. Applying (AS)-(AD) to (A2), we obtain an ex- 
pression for g•, quoted as (6) in the text. 

Stress Concentrations 

An assumption implicit in the thermodynamic analysis used 
here is that the process is driven by the average stresses' rather 
than by stress concentrations within the aggregate. Although 
stress concentrations will arise immediately upon the appli- 
cation of stress, they will be smoothed out by diffusion until 
steady state stresses compatible with long-range creep are es- 
tablished. This problem has been thoroughly examined in the 
literature where it has been shown that the relaxation time for 
stress relief is much smaller than the time scale over which 

significant diffusional creep is observed [Raj and Ashby, 1971; 
Raj, 1975]. 

APPENDIX B 

We illustrate here the procedure for obtaining the rate equa- 
tions quoted in Table 1. 

In the general case, the driving force is expended partly in 
driving the interface reactions and partly in driving diffusion 
through the fluid. An approximate distribution of the potential 
distribution when both have about equal weight is shown by 
the schematic in Figure B 1. A simple way to solve the coupled 
problem is to solve for the two limiting cases independently and 
then superimpose them using a dashpot analog as described in 
the text. 

Interface Reaction Limited Case 

Let us consider the creep problem. Again we assume the 
grains to be in the shape of cubes (this is an approximation but 
would yield results which are dimensionally correct and which 
are numerically correct to within a factor of about 2). In the 
interface limited case, all of the driving force will appear as a 
potential drop at the 'source' and 'sink' interface (see Figure 
B1). The total potential drop is ged/2 (this has units of energy 
per molecule), which will be distributed equally between the 
source and the sink. The rate of advance in the interface will be 

k•'6 x (potential drop across the interface), in units of meters 
per second, and the strain rate will be equal to the rate of 
interface advance divided by one half of the grain size. Substiut- 
ing for ge from (5), these steps lead to the following equation for 
the strain rate: 

/•e - (B1) 
d kT 
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d/2 

Fig. B I. The total potential drop is used partly to drive the inter- 
face reaction and partly to drive diffusional transport. In limiting cases, 
only one of these will be of overwhelming importance. 

Exactly similar reasoning leads to an equivalent result for/9; 
remember that the volumetric creep rate is 3 times the linear 
creep rate if the total strains are small. 

Diffusion Limited Case 

We relate this creep rate to the viscosity of the fluid with the 
use of the Stokes-Einstein equation which correlates viscosity 
with diffusion: 

kT 

•1 - 6•bD (B2) 
where b is the jump distance in diffusion and D is the diffusivity 
of the solute in the fluid [Moelwyn-Hughes, 1947]. 

For diffusional creep we use the equation for Coble creep in 
terms of equivalent stress and equivalent strain rate [Coble, 
1964]. (Coble's equation contains an error of • [Raj and Ashby, 
1971]. This has been corrected here. Also the result here is 
expressed in terms of equivalent stress and equivalent strain 
rate.) 

O'e•'• (•D•, 
de = 44 k--• d --•- (B3) 

In (B3), • represents the cross section for grain boundary diffus- 
ion and Db represents the grain boundary self-diffusion coef- 
ficient. In the equivalent case being considered here, • = xh, 
where x is the area fraction of the boundary occupied by islands 
and h is the thickness of the fluid layer. Also Db is equivalent to 
•D where • is the mole fraction of the solute dissolved in the 

fluid [Raj and Chyung, 1981]. Making these substitutions in 
(B2) and (B3), we obtain 

O'ef• 
de = 2.3 • •7• (B4) 

where •z = xh/b; as a first approximation we may assume that 
•z • 1. The equivalent expression for/9 is obtained by sUbstitut- 
ing for o' e by (Pe-- Y/r), and by multiplying by 3 to convert linear 
strain rate into volumetric strain rate. 
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